A novel application of the S-transform in removing powerline interference from biomedical signals.

نویسندگان

  • Chien-Chun Huang
  • Sheng-Fu Liang
  • Ming-Shing Young
  • Fu-Zen Shaw
چکیده

Powerline interference always disturbs recordings of biomedical signals. Numerous methods have been developed to reduce powerline interference. However, most of these techniques not only reduce the interference but also attenuate the 60 Hz power of the biomedical signals themselves. In the present study, we applied the S-transform, which provides an absolute phase of each frequency in a multi-resolution time-frequency analysis, to reduce 60 Hz interference. According to results from an electrocardiogram (ECG) to which a simulated 60 Hz noise was added, the S-transform de-noising process restored a power spectrum identical to that of the original ECG coincident with a significant reduction in the 60 Hz interference. Moreover, the S-transform de-noised the signal in an intensity-independent manner when reducing the 60 Hz interference. In both a real ECG signal from the MIT database and natural brain activity contaminated with 60 Hz interference, the S-transform also displayed superior merit to a notch filter in the aspect of reducing noise and preserving the signal. Based on these data, a novel application of the S-transform for removing powerline interference is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal and EMD based removal of baseline wander and powerline interference from ECG signals

This paper presents novel methods for baseline wander removal and powerline interference removal from electrocardiogram (ECG) signals. Baseline wander and clean ECG have been modeled as 1st and 2nd-order fractional Brownian motion (fBm) processes, respectively. This fractal modeling is utilized to propose projection operator based approach for baseline wander removal. Powerline interference is ...

متن کامل

Fusion Framework for Emotional Electrocardiogram and Galvanic Skin Response Recognition: Applying Wavelet Transform

Introduction To extract and combine information from different modalities, fusion techniques are commonly applied to promote system performance. In this study, we aimed to examine the effectiveness of fusion techniques in emotion recognition. Materials and Methods Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy female students (mean age: 22.73±1.68 years) were collected ...

متن کامل

Implementing a Smart Method to Eliminate Artifacts of Vital Signals

Background: Electroencephalography (EEG) has vital and significant applications in different medical fields and is used for the primary evaluation of neurological disorders. Hence, having easy access to suitable and useful signal is very important. Artifacts are undesirable confusions which are generally originated from inevitable human activities such as heartbeat, blinking of eyes and facial ...

متن کامل

Application of Wavelet Transform as a Signal Processing Method for Defect Detection using Lamb Waves: Experimental Verification

A Lamb wave-based crack detection method for aluminum plates health monitoring is developed in this paper. Piezoelectric disks are employed to actuate and capture the Lamb wave signals. The position of crack is assumed to be aligned with the sensor and actuator.  Extraction of high quality experimental results of lamb wave propagation in a plate-like structure is considerably complicated due to...

متن کامل

Pervasive white and colored noise removing from magnetotelluric time series

Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2009